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A Strategy for Compression
and Analysis of Massive
Geophysical Data Sets

NASA launched its first Earth Observing System (EOS) satellite, Terra,
into polar orbit on December 18,1999. Terra carries five instruments for
studying Earth’s climate systems over a six year period, and will produce
vast quantities of data; more than much of the user community is equipped
to handle. In geoscience, traditional strategies for coping with this problem
are two-fold. The first is to work only with spatio-temporal subsets. The
second is to work with low-resolution summaries typically created by par-
titioning data for a specified time period into 1° latitude by 1° longitude
regions, and summarizing each region by its mean and standard deviation,
or other simple statistics. The first strategy fails to take advantage of the
global nature of Terra data, and requires researchers to know ahead of time
where interesting phenomena exist. The second strategy fails to capture
multivariate structure, and may aggregate away important high-resolution
features.

This paper describes a method for summarizing these data in a way that
approximately preserves high-resolution data structure while reducing data
volume and maintaining global integrity of very large, remote sensing data
sets. The method is under development for one of Terra’s instruments, the
Multi-angle Imaging SpectroRadiometer (MISR). The strategy is to parti-
tion data for each month into 1° latitude by 1° longitude spatial cells, and
summarize each cell with a set of representative points and their associ-
ated frequencies. Each representative stands for some number of original
observations, that number given by frequency. The combination of repre-
sentatives and counts is a compressed version, or summary, of the original
data. Researchers wishing to conduct global, exploratory analysis can do
so using the compressed data with the understanding that results should
be confirmed using appropriate portions of the original data.

The algorithm used to construct these summaries is a modification of
the Entropy-constrained Vector Quantization algorithm (ECVQ) of Chou,
Lookabaugh and Gray (1989), and is described in Section 1.2. First, how-
ever, Section 1.1 describes the MISR data stream. Finally, Section 1.3
provides an example analysis using compressed MISR data.
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2 1. A Strategy for Compression and Analysis of Massive Geophysical Data Sets
1.1 MISR Data

MISR (Diner, Beckert, Reilly, Bruegge et. al., 1998) is a set of nine cam-
eras mounted underneath Terra looking down at Earth at nine view angles:
70.5°, 60.0°, 45.6°, and 26.1° aft; 0° (nadir), and 70.5°, 60.0°, 45.6°, and
26.1° forward along the spacecraft’s north-south flight path. Each camera
has four line arrays of 1504 pixel across the field of view and perpendicular
to the flight track. The line arrays are each sensitive to one of four wave-
lengths: blue, green, red, and NIR (446, 558, 672 and 866 nanometers),
and each pixel views a square region on the ground 275 meters on a side.
Thus, one orbital swath on the daylight side of Earth tiles the view into
disjoint, contiguous 275 meter spatial regions, and produces 36 radiance
measurements for each one. Data for the nadir camera and the red bands
in the other cameras are transmitted to Earth at full 275 meter resolution.
Data for all other channels are averaged up to 1.1 km resolution on-board
the spacecraft to limit data rate. The instrument does not take data as
the satellite travels up the night side, so sequential orbits are separated.
After 16 days 233 unique but overlapping orbits have completed covering
the whole Earth. Every 234th orbit covers the same ground track as the
first to within 20 kilometers.

MISR data processing takes this radiance data through several steps.
First, data are geometrically and radiometrically calibrated to create the
so-called Level 1B2 product. There is a seven minute lag between the for-
ward and aft-most views of the same scene. Geometric rectification aligns
the observations to produce 36 measurements (nine angles by four wave-
lengths) associated with the latitude and longitude of each pixel center.
MISR produces about 40 GB per day of Level 1B2 data. Second, Level
2 data are created by converting these 36-vectors into geophysical quanti-
ties through complex science algorithms. For example, méasurements taken
within a 17.6 kilometer area are used to derive aerosol type and amount by
matching observed radiances with those predicted by various physical mod-
els. Other quantities such as cloud height, wind direction and speed, and
surface properties are derived at other spatial resolutions, typically 1.1, 2.2,
and 35.2 kilometers. This second stage of processing reduces data volume
by reducing spatial resolution, but increases data volume because many
more than 36 geophysical variables are derived. MISR generates about 20
GB per day of Level 2 data.

The third processing step creates Level 3 monthly summaries by parti-
tioning observations according to their membership in cells of a 1° latitude
by 1° longitude spatial grid, and summarizing by grid cell. At the time
of this writing the intention is to routinely produce compressed Level 3
data products derived from a select set of Level 2 geophysical variables.
However, the method is also applied to portions of the Level 1B2 radiance
data for research and analysis purposes. One such application is the topic
of Section 1.3.



1. A Strategy for Compression and Analysis of Massive Geophysical Data Sets
1.2 Monte Carlo Extended ECVQ

ECVQ is an iterative algorithm that groups data into a collection of disjoint
clusters so as to minimize the loss function

N
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where y;, is the nth row of an N x C data matrix representing one spatial
cell in one month. a(y,) is an integer indexing the cluster to which y,
is assigned, and S(k) is the representative of the cluster indexed by k.
N(a(y,)) is the number of data points (rows) assigned to y,,’s cluster, and
A is a fixed constant. —log (N(k)/N) is positive and varies inversely with
N (k). Thus, even if ||y, — BE)|® > |lyn — B(k2)I)?, yn could be assigned to
cluster k; if the difference in the terms involving logarithms compensates.
If A =0, Ly is euclidian distance, and ECVQ is equivalent to the batch
version of the K-means clustering procedure (MacQueen, 1967).
Briefly, the ECVQ algorithm works as follows:

1. Fix the maximum number of clusters allowed, K, and the compression
parameter, A.

2. Arbitrarily assign the y,’s to the K clusters by specifying initial val-
ues for a(y,). Compute means and frequencies of these clusters, and
denote them S(k) and N{k) respectively, for k =1,2,..., K.

3. Reassign each y, to the cluster with the smallest loss:

a(yn) = argmin, {ilyn — BRI + A [—log N (’“)} } .

N
4. Update (k) and N(k) for all k.
5. Eliminate any clusters for which N(k) = 0.
6. Repeat steps (3), (4) and (5) until convergence.

The ECVQ solution has the property that the B(k)’s are the means of
the y.’s they represent, a property call self-consistency by Tarpey and
Flury (1996). However, assignment of data points to clusters is not nearest-
neighbor in euclidian distance, and therefore does not minimize mean
squared error,

1 Y 2
6= N,; ”yn - ,B(a(yn))” .

d is also called distortion. The algorithm is guaranteed to converge in a
finite number of steps, but not necessarily to either a local or global mini-
mum. However, the solution does improve on the starting point providing
a sensible summary of the y,,’s in the sense described by MacQueen: “The
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4 1. A Strategy for Compression and Analysis of Massive Geophysical Data Sets

point of view taken in this application is not to find some unique, definitive
grouping, but rather to simply aid the investigator in obtaining qualitative
and quantitative understanding of large amounts of ... data by providing
him with reasonably good similarity groups.” (MacQueen, 1967, page 288.)

To apply ECVQ to large quantities of geophysical data, two modifications
are made. First, since the algorithm is O(n?) and cell populations are large,
a sample of M rows from each cell is chosen. ECVQ is applied to the sam-
ple, and an initial set of representatives, {ﬁ*(k)}f__jl, obtained. This is the
design step. Then each original data point in the cell is assigned to its near-
est euclidian distance 5*(k), empty clusters are deleted, and representatives
and counts updated. This is the binning step. In other words, a prelimi-
nary set of representatives is determined from a sample, then the entire
cell data set clustered using it. The ultimate set of clusters and counts thus
reflects all the data, and is approximately nearest-neighbor. The resulting

- . Kk
summary is denoted {,B(k) N(k )}k . This modification constitutes the
Extended ECVQ (EECVQ) procedure
The second modification addresses the fact that EECVQ is sample de-
. . E
pendent, and { B(k),N (Ic)}k_1 is subject to sampling variation. To account

for this EECVQ is repeated S times using different random samples on each
trial in the design step. This produces S summaries of the cell data, each
one having a mean squared error J;. The best summary is the one having

the smallest §: sype = argming{d, } o=1, and {ﬁsop, (k), Ns, . (k)}k 1“ is se-

lected to represent the original data. d,,, is reported as a goodness of fit
measure, and the entropy of the best summary,

_Z opt(k opt(k)
s,,,,, = N E]

is reported as a measure of descriptive complexxty of the underlying data.
Average mean squared error over trials, § = S~! Z +=1 0, is also reported as
an overall figure of merit. This procedure that embeds EECVQ in a Monte
Carlo simulation is called Monte Carlo Extended ECVQ (MCEECVQ).

Finally, a value of A must be selected. A controls the level of compression.
High values put a premium on the penalty — log N(k)/N, cause summaries
to collapse down to fewer, more highly concentrated clusters, and result
in higher mean squared errors. Low values usually result greater numbers
of clusters, higher entropies, and lower mean squared errors. Since entropy
measures descriptive complexity of the output distribution, A parameterizes
the trade-off between distortion and complexity.

Choosing A for any cell in isolation amounts to deciding how much com-
pression one wants to achieve in that cell beyond that assured by fixing
the initial number of clusters K, and how much mean squared error one
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is willing to tolerate. When summarizing many cells in concert, it is de-
sirable that distortions be as equal as possible across cells so differences
in summaries reflect differences in data they represent, not differences how
well summaries fit their parent data. As a consequence of the trade-off be-
tween mean squared error and entropy, this tends to produce summaries
with entropies that reflect concentrations of mass in underlying empirical
distributions. Figure 1.1 illustrates a simple example. The top two panels
show two data sets drawn from mixtures of bivariate normal distributions.
The middle panels show those data summarized using five clusters in each
case: K = 5, A = 0. Data from the top panels are shown on plot floors, the
positions of the spike show locations of cluster representatives, and spike
heights show cluster populations. Bottom panels show how these data are
summarized by ECVQ with K = 5 and A = .04. In the A\ = .04 regime,
high density regions are reflected by fewer, more massive clusters. The sums
of squared distances between points and their nearest representatives are
more nearly equal in the bottom panels than in the middle panels.

In practice one selects a value of K to limit the maximum size of the
MCEECVQ output to K x B, where B is the number of cells being sum-
marized. This determines an overall level of mean squared error. Then, one
selects A to minimize the variance of &’s across cells:

= 1 B 22
Var(d) = 5 Z(& -9),
b=1

where b indexes cell and § = B! Ef=1 . This requires testing various
values of X\ beforehand. If necessary because of data volume, this can be
done using a subset of cells.

.

1.3 Application to MISR Data

To illustrate MCEECVQ, it is applied to MISR Level 1B2 data collected
over the eastern United States on March 6, 2000. 15 of the 36 radiances are
shown in Figure 1.2. The five panels shows the scene in three (red, green,
blue) of the four spectral bands and from five of the nine view angles. All
data used for this exercise have been average up to 1.1 km resolution. The
data set partially depicted in Figure 1.2 has 491,044 observations, each
representing a 1.1 km spatial region, and 38 columns: one for each view
angle-spectral band combination, and latitude and longitude.

A frequent objective in the analysis of remote sensing data is to classify
pixels in a scene. In Figure 1.2 water, ice (in the far eastern end of Lake
Erie), clouds (over central New York state), vegetated land of various types
and terrain, and haze are all evident. MISR’s multi-angle observations pro-
vide a novel kind of information useful for these classifications. For example,
haze is more obvious in the oblique angles because these views represent
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longer paths through the atmosphere. The combination of 36 radiances is
expected to provided better discriminatory power than single view-angle,
multi-spectral data.

One way to classify the scene in Figure 1.2 would be to run a K-means
cluster analysis on all 491,044 observations. Even choosing a modest value
for K of, say ten, is computationally intensive and time consuming. Instead,
the following procedure was used. First, the data were partitioned into 84
1° x 1° strata, and each strata summarized using MCEECVQ. MCEECVQ
was applied with K = 10, A = 2, sample size M = 200, and S = 50 trials.
The samples used in the design step were first standardized using the grand
means and variances for all 491,044 data points, and then projected into
the space of the first ten principal components calculated from the grand
correlation matrix. Ten principal components account for over 98 percent
of the total variation in the data. MCEECVQ was applied to the trans-
formed data, and representatives were re-transformed back to the original
36-dimensional data space before the binning step. A = 2 was chosen after
testing 15 values (A = 0,.5,1,...,6.5,7) and determining A = 2 minimized
Var(8) across the 84 strata in the reduced space. This produced between
one and ten representatives and associated counts for each spatial cell.

The MCEECVQ output contained a total of 479 representatives and
counts, and 84 associated values of ds,,,, hs,, and 8. These are shown
in Figure 1.3 along with the original cell populations, N, the numbers of
representatives in the summaries, K. Note that cells with the largest values
of N are not necessarily those with the largest numbers of representatives.

Second, a weighted K-means analysis with K = 10 was applied to the
479 representatives. Here, the 479 cluster representatives serve as data
points to be clustei_%i. Combining representatives and counts to form
{Bsm (k), Ny, (k)}k—1’ an initial set of ten representative is selected at
random with probabilities N, sope (K)/ }:g’l N, s.p¢ (k). These serve as the ini-
tial “supercluster” centroids, and each of the 479 cluster means is then
assigned to the supercluster with the nearest centroid. Supercluster cen-
troids are updated by computing the weighted averages of members with
weights proportional to Nsop,(k). These steps are iterated until conver-
gence. The weighted K-means procedure was repeated 50 times, and the
solution with the smallest weighted mean squared error adopted. Weighted
mean squared error is

479 ¥
- - 2 N, ,(k)

Owtd = 1Bsope (k) = 4(Bspne OV =g5—=——7>
2 AT

where q(,&,we (k)) is the representative of the cluster to which Bsope (k) is
assigned in this second-stage K-means analysis. The resulting K = 10
supercluster representatives are taken as the ten types used to classify the
scene.
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Finally, each of the original 491,044 data points is assigned an integer
between one and ten indicating which of the ten superclusters it is nearest in
euclidian distance. The map in Figure 1.4 shows the resulting classification
of the scene. The classification identifies the band of haziness (in red) that
is barely visible in the nadir image but more apparent in the 70° forward
view in Figure 1.2. Figure 1.4 also distinguishes sun glint on water off
the southeast coast and in Lake Ontario seen in the 45° forward view,
ice at the extreme east end of Lake Erie, and ice and clouds over Lake
Simcoe in the upper left corners of the images in Figure 1.2. The ability to
differentiate between pixel types that are indistinguishable at a single nadir
view highlights the principal behind multi-angle imaging. This K-means
analysis is an example of a procedure scientists are interested in conducting
on data of this type, but which may be impractical if not for a volume-
reduced version of the data that approximately preserve high-dimensional
relationships.

1.4 Summary and Conclusions

This paper describes a randomized version of the ECVQ algorithm for cre-
ating compressed versions of large geophysical data sets. The technique is
especially well suited to remote sensing data such as that obtained from
MISR, since they are naturally stratified by geographic location, and have
strong high-dimensional structure. The technique is demonstrated by par-
titioning a test MISR data set according to membership in 1° latitude
by 1° longitude spatial regions, and compressing data in each region. The
compressed data are a set of representative vectors and associated counts
which can be thought of as multivariate histograms with variable numbers
of bins, and bins with sizes and shapes that adapt to the shape of the data
in high-dimensional space. The algorithm is applied to all regions using
common values of algorithm parameters K and A. K specifies the maxi-
mum number of representatives and is set to limit the size of the output to
no more than K times the number of spatial regions. This determines the
overall level of error between the summaries and their parent data. A sets
the level of compression over and above that resulting from the choice of
K, and is selected so that entropies of mass distributions in the compressed
data reflects concentrations of mass in the original 1° latitude by 1° data
sets. This choice of A also equilibrates the mean squared errors between
compressed and original data across spatial regions, and therefore yields
summaries that are of approximately equal quality. Compressed data are
then used in place of original data in a cluster analysis to create a thematic
map of the Appalachian region of the US as seen by MISR.

This exercise was performed on a relatively small amount of test data.
Samples were used in the design step, but the full test data set is used for
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binning in each trial of the simulation. This requires S+ 2 passes through all
the data: one to collect samples, one for each trial, and one to finally bin the
data. In larger applications, it may not be possible to scan the full data set
multiple times. Another version of the algorithm is under development to
address this problem. Also, choosing A requires testing multiple candidate
values, 15 in this case. This necessitates running MCEECVQ 15 times on
each 1° latitude by 1° data set. Again, the strategy may not be practical
for larger applications. An alternative is to test for the best A on a subset of
1° latitude by 1° regions. For example, in a global application those regions
indexed by latitudes and longitudes evenly divisible by five or ten degrees
could be used.

The method described here is on its way to becoming an operational algo-
rithm for compressing a portion of MISR Level 2 geophysical data products
on a monthly basis. To a large extent, its efficiency and effectiveness will
depend on the data themselves. How well MCEECVQ scales up, and what
further modifications are necessary remain to be seen.
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Figure 1.1. Top left: 100 observations from f(z) = m1fi(z) + w2 f2(x) where fi
and f, are uncorrelated bivariate normals with g3 = (-.5,0), p2 = (+.5,0) and
o1 =02 = 1, and 7, = m; = .5. Top right: same as top left except o1 = 02 = .3.
Middle left and right: summaries of data with K = 5 and A = 0. Bottom left and
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right: summaries of data with K =5 and A = .04.
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Figure 1.2. Left to right: 70.5° forward, 45.6° forward, nadir, 45.6° aft, and 70.5°
aft.

Figure 1.3. Left to right: Average cell mean squared error (over trials) as a pro-
portion of average cell squared data norm; best cell summary mean squared error
as a proportion of average cell squared data norm; best cell summary entropy;
best cell summary number of clusters; cell population.
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Figure 1.4. MISR thematic map of the Appalachian scene.
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